Why I am excited about working on DAMIC-M in 10 minutes

Giorgos PAPADOPOULOS

DAMIC-M

LPNHE, Sorbonne University, Paris, France

Supervised by: Antoine Letessier-Selvon

for New Perspectives 2020

Dark matter introduction

Dark Matter

Not electromagnetically interacting

Gravitationally interacting like matter

WIMP(s): Weakly Interacting Massive Particle(s)

DAMIC-M expected limits

Spin-independent DM-nucleon scattering cross section vs DM mass

Giorgos PAPADOPOULOS

DAMIC-M overview

To achieve these limits:

Massive detector

Very low threshold & Single *e* resolution

Very low background (cosmic bg & radioactivity)

DAMIC-M overview

To achieve these limits:

Massive detector

Very low threshold & Single e resolution

Very low background (cosmic bg & radioactivity)

DArk Matter In CCDs at Modane (DAMIC-M):

- Direct dark matter detection
- Low mass WIMPs and hidden sector DM
- Scientific grade Charge-Coupled Devices with a total target mass of ~1kg
- CCDs with Skipper readout implementation
- R&D of a novel acquisition system
- Radiopure materials for construction & shielding ~0.1 events/(keV kg day) = 0.1 dru
- Placed in Underground Laboratory at Modane

DAMIC at Modane - 2022

- Radon free air supply

12868 m

Distance 0m

Shielding & Background

DAMIC @ SNOLAB background = 11.8 dru DAMIC-M background goal = fraction of 1 dru

DAMIC-M CCDs

Scientific-grade Charge Coupled Device (CCD) made of pure n-type Si

- 50 CCDs in a tower with a total target mass ~1kg
- Most massive CCDs ever built: 36Mpix large with a pixel area of 15μm x 15μm and 675μm thick, ~20g each
- 3D reconstruction of the incident point using the charge packet diffusion

CCD Operation

Collected charge

Dark current: thermally generated charge in the bulk of the silicon

Charge Transfer

Potential -

Photons

Buried

channel

n Type Silicon Substrate

Silicon Dioxide

Move the charge by alternating the voltage of the electrodes (clocks) to the Readout circuit

Clock noise: lose or gain charge if the clocks are not well defined

Horizontal register

Skipper CCDs − sub-*e*⁻ resolution

- **Regular** CCD: single skip integration time $O(10\mu s)$
 - → high frequency noise is eliminated
 - → low frequency noise dominates (1/f noise)
- **Skipper** CCD: single skip integration time $O(1\mu s)$
 - → multiple measurements of the pixel charge
 - → low frequency noise eliminated
 - → single measurement of low resolution

Pegular CCD

Signal

pixel charge measurement

high frequency noise

low frequency noise

Output noise decreases as $1/\sqrt{NDCM}$ (Non-Destructive Charge Measurements), reaching sub- e^- resolution

New acquisition system

CROC: CCD ReadOut Chip

- Low noise
- Amplifies and processes the output of the CCD to improve the SNR
- Minimizes any introduced noise until the ADC

ADC: **A**nalog to **D**igital Converter

- High resolution
- Fast sampling

CABAC: Clocks And Biases ASIC for CCD

- Provides the necessary clocks and bias voltages for the CCD operation
- Performs the sequencing of the clocks

Timeline

Giorgos PAPADOPOULOS

References:

[1] DAMIC-M Experiment: Thick, Silicon CCDs to search for Light Dark Matter, N. Castello-Mor for the DAMIC-M Collaboration, 2020

Extra slides

CCD readout circuit

Reaching the end of the CCD, there is a circuit to convert the pixel charge into voltage.

- The Reset Gate sets the Sense Node at a voltage reference value. This will cause a bump in the output signal which will decay quickly, resulting in an outcome reference level *around* Vref.
- The charge Q is injected to the SN changing the voltage by $V_Q = Q/C_S$, where C_S is the capacity of the sense node which is known.
- Measure and subtract the reference and signal levels to find the V_{Q} .

CCD noise sources

Reset or *kT/C* noise

- After reset pulse thermal noise is generated by the resistance of the reset FET. The small capacitance of the Sense Node ~fF leads to a significant uncertainty of the reference level.
- Correlated Double Sampling (CDS): measure both the reference and signal levels and subtract them to eliminate the reset noise.

Dark current

- Thermally generated electrons in the bulk of the CCD
- Linear dependence on time → limits the exposure duration.
 The longer the exposure, the worse the Signal to Noise Ratio.
- Lower the temperature (~100-140K) to decrease the dark current

Flicker or 1/f noise

- Source: generated traps in the output MOSFET
- The faster the readout frequency of the CCD, the less the contribution of the flicker noise.
- Dominant up to ~0.1MHz readout speed

White noise

Thermal noise generated by the output amplifier MOSFET.

Sequencer for DAMIC-M CCDs

- The total readout time increases linearly with the skips per pixel
- Dark current! (thermal noise generated in the silicon bulk of the CCD) limits the exposure period of the CCD weakening the Signal-to-Noise Ratio (SNR)
- > DAMIC-M CCDs have 4 readout circuits to decrease the total readout time
- Precise signals (clocks) move the charge in the most efficient way

Schematic of DAMIC-M CCD

17

New Electronics

The CCD is placed in a cryostat and is controlled and readout by external electronics.

- All voltages and clocks during the expose and readout phases will be provided by the Clocks And Biases ASIC for CCD (CABAC) board.
 - A **sequencer** implemented in the software will define the 4CABAC board output for the control of the CCD and the CROC.
- **CCD ReadOut Chip** (**CROC**): amplifies and processes the signal to improve the Signal-to-Noise Ratio.
- **Analog to Digital Converter (ADC)**: performs the transition from the analog to the digital domain.
- Everything is controlled by the Online Digital Interface for Low-noise Electronics (ODILE) motherboard.

CROC: Transparent mode

The CROC operates as a simple single-to-differential gain amplifier. The output signal shape will be similar to the CCD's, just amplified.

Basically, the ADC oversamples the reference and signal levels.

Advantages

- Digitally determination of the reference and signal level by averaging a sufficient number of samples → Digital CDS (DCDS)
- Further digital analysis is possible.

Challenges

 Large number of data to process with Firmware and later on in analysis.

CROC: DSI mode

The DSI is the dominating mode to be used for the pixel charge measurement. The DSI method combines a *Correlated Double Sampling* V_0 and a CCD signal integration.

- 1) A **reset pulse** sets the CROC input to a voltage reference. Same principle as for the CCD conversion of charge.
- 2) As the reference level stabilises, the CROC amplifies and **integrates** this level for an integration time t_{int}
- 3) The CROC input is isolated while the pixel charge is injected to the Sense Node of the readout circuit.
- 4) When is stable, the signal level is **integrated** for the same integration time with **reversed polarity** *with respect to the reference level* (*achieving the CDS*)
- 5) The **ADC** measures the output of CROC.
- New measurement with a new reset pulse...

Reset \rightarrow measure reference \rightarrow measure signal \rightarrow Sample with ADC

